
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Kokkos	Evolution:
Task-DAG and	Back-ends

DOE	COE	Performance	
Portability
August	22-24,	2017
Denver,	CO

H.	Carter	Edwards

SAND2017-8951	PE

1

DDR

HBM

DDR

HBM

DDRDDR

DDR

HBMHBM

Multi-Core Many-Core APU CPU+GPU

Drekar Trilinos
SPARC

Applications	&	Libraries

Kokkos*
performance	portability	for	C++	applications

Albany
EMPIRELAMMPS

*κόκκος Greek:	“granule”	or	“grain”	;		like	grains	of	sand	on	a	beach

2

Part	1:	Kokkos’	Back-ends
§ Map	algorithms	and	arrays	to	underlying	NGP	node	architecture

§ Productive,	performance-portable	abstractions	/	programming	model
§ Map	onto	architecture’s	best	programming	mechanism:	CUDA,	OpenMP,	...
§ Abstractions	and	programming	mechanisms	are	evolving

Part	2:	Kokkos’	Task-DAG	Pattern/Policy
§ Previously	only	data	parallel	patterns	/	policies

§ parallel_for,	parallel_reduce,	parallel_scan patterns	over	range	policy	[0..N)
§ Optional	hierarchical	thread	team	policy	to	maximize	available	parallelism

§ New	directed	acyclic	graph	of	tasks	parallel	patterns	/	policies
§ Tasks:	Can	be	heterogeneous collection	of	parallel	computations
§ DAG:	Tasks	may	have	acyclic	execute-after	dependences
§ Dynamic:	Tasks	can	be	spawned	within	executing	tasks

3

FY17-18	evolution	of	Kokkos’	Back-ends

§ OpenMP for	CPU	and	KNL+
§ Require	OpenMP 4+	for	proper	granularity	of	thread-binding
§ Compatibility	/	interoperability	with	nested	parallel	regions

§ Continue	optional	use	of	hwloc to	choose	performant	sizes	for	nesting
§ Leverage	matured	OpenMP 4+	features

§ Scheduling,	loop	collapse,	customized	reductions,	...
§ Strategy	for	performant	AMT	/	Kokkos	/	OpenMP interoperability

§ Outcome	of	collaboration	with	U-Utah’s	“Uintah”	framework

§ CUDA	9+	for	NVIDIA	GPU
§ Proper	collectives	and	controls	provided	by	CUDA	thread	groups

§ Address	warp	divergence	bug
§ Sub-block	thread	teams	to	improve	flexibility	of	hierarchical	parallelism

§ Best	realized	on	Volta	architecture
§ Full	host-device	lambda	capability	with	C++17	capture:	[=,*this]

4

FY17-18	evolution	of	Kokkos’	Back-ends

§ C++11	std::thread	for	CPU	and	KNL+
§ Portability	to	OS/runtime	that	does	not	OpenMP (e.g.,	Windows)
§ Performance	comparison	with	OpenMP
§ Research	thread	synchronization	and	collectives,	runtimes

§ Backend	for	ARM	(CPU)
§ OS/runtime/compiler	stack?	tbd
§ Best	thread	parallel	mechanism:	OpenMP,	std::thread,	...?	tbd

§ ROCm for	AMD	GPU;	developed	by	AMD
§ OpenMP 4.5	offload	for	GPU
§ Clang-CUDA	for	GPU

5

§ Pattern
§ Parallel	execution	of	computations	(tasks)
§ That	have	“execute	after”	dependences

§ Policy
§ Scheduling	ready	tasks
§ Updating	dependences	as	tasks	complete

§ Dynamic	and	Heterogeneous	Task-DAG
§ Manage	tasks’	lifecycle	– tasks	spawned	within	executing	tasks
§ Manage	tasks’	memory	– task	and	workspace	allocated/deallocated
§ Each	task	may	be	a	different	function	(C++	closure)

§ Static	and	Homogeneous	Work-DAG
§ Single	function,	similar	to	data	parallel	patterns
§ Predefined	DAG	of	”execute	after”	work	indices:	{	k	executes-after	{	i,	j,	...	}	}

Directed	Acyclic	Graph	(DAG)	of	Tasks

6

Task-DAG	Motivating	Use	Cases
1. Multifrontal Cholesky	factorization	of	sparse matrix
§ Frontal	matrices	require	different	
sizes	of	workspace	(green)	for	sub-assembly

§ Hybrid	task	parallelism:	tree-parallel	&	
matrix-parallel	within	supernodes (brown)

§ Dynamic	task-dag	with	memory	constraints
§ Matrix	computation	is	internally	data	parallel
§ Lead:	Kyungjoo	Kim	/	SNL

2. Triangle	enumeration	in	social	networks,	highly	irregular	graphs	
§ Discover	triangles	within	the	graph
§ Compute	statistics	on	those	triangles
§ Triangles	are	an	intermediate	result
that	do	not	need	to	be	saved	/	stored
Ø Challenge:	memory	“high	water	mark”

§ Lead:	Michael	Wolf	/	SNL

4
5 1

2

3

k2

k1

4

0
1
X X X X

XXX
X X
7 X

8

3
2 X

6

3
4
X X X

XX
X
8

7
5 X

6
7
X X

X
8

X

X

X

X

X

8

7

6

5

4

3

2

1

0 X

53 820 64 71

3

1

5

4

8

6

2

7

0

XX

XX

X

X

X

X

X

X

X

7

Work-DAG	Motivating	Use	Case
§ Neutral	Particle	Transport	via	Sweeps
§ Tycho2	mini-application	(https://github.com/lanl/tycho2)
§ “A	neutral	particle	transport	mini-app	to	study	performance	of	sweeps	on	
unstructured,	3D	tetrahedral	meshes.”

§ Lead:	Kris	Garrett	/	LANL

§ Tycho2	version	using	Kokkos	Work-DAG
§ All	angle	sweeps	through	unstructured	mesh	in	a	single	DAG
§ Work	index:	K	=	angle_index *	number_elements +	element_index
§ Angle	sweeps	define	work	“execute	after”	dependences
§ Running	on	CPU	and	KNL	- as	of	July	27,	2017
§ Next	steps:	

§ Port	data	structures	to	Kokkos	for	performance	portability	to	GPU
§ Performance	evaluation	and	improvements

parallel_for

parallel_reduce

8

Hierarchical,	Thread	Team	Parallelism
§ Shared	functionality	with	hierarchical	data-data	parallelism

§ The	same kernel	(task)	executed	on	…
§ OpenMP:	League	of	Teams	of	Threads
§ Cuda:								Grid						of	Blocks	of	Threads

§ Inter-Team	Parallelism	(data	or	task)
§ Threads	within a	team	execute	concurrently	
§ Data:	each	team	executes	the	same	computation
ØTask:	each	team	executes	a	different	task

§ Intra-Team	Parallelism	(data)
§ Nested	parallel	patterns:	for,	reduce,	scan

§ Mapping	teams	onto	hardware
§ CPU	:	team	==	hyperthreads sharing	L1	cache’
§ GPU	:	team	==	warp,	for	a	modest	degree	of	intra-team	data	parallelism

9

Dynamic	Task	DAG	Challenges
§ A	Dynamic	DAG	of	Heterogeneous	Functions	(closures)
§ Map	functions	onto	a	single	thread	or a	thread	team	
§ Scalable dynamic	allocation	/	deallocation	of	tasks
§ Scalable and	low	latency	scheduling
§ Scalable dynamic	creation	/	completion	of	execute-after	dependences

§ GPU	idiosyncrasies	/	constraints
ØNon-blocking	tasks,	forced	a	beneficial	“respawn”	reconceptualization!		

§ Eliminate	context	switching	overhead:	stack,	registers,	...
§ Heterogeneous	function	pointers	(CPU,	GPU)
§ Creating	GPU	tasks	on	the	host	andwithin	tasks	executing	on	the	GPU
§ Bounded	memory	pool	and	scalable	allocation/deallocation
§ Non-coherent	L1	caches

10

Scalable	Memory	Pool	and	Task	Scheduler	
§ Memory	Pool
§ Lock-free	and	low	latency	via	atomic	operations
§ Large	chunk	of	memory	allocated	in	Kokkos	memory	space
§ From	which	smaller	blocks	are	allocated	and	deallocated

§ Task	Scheduler
§ Memory	pool	for	tasks’	dynamic	memory
§ Multiple	prioritized	ready	queues
§ Per-task	execute-after	waiting	queues
Ø Each	queue	is	a	simple	linked	list	of	tasks

§ Lock	free	push/pop	via	atomic	operations
§ Explicitly	manage	GPU	non-coherent	L1	cache

§ Problem:	dynamic	allocation/deallocation	across	GPU	processors	not	automically
observed	by	GPU	L1	cache	hardware

§ Solution:	explicitly	manage	via	GPU	programmable	L1	cache,	a.k.a.	__shared__

11

Memory	Pool	Performance
§ Test	Setup
§ 10Mb	pool	comprised	of	153	x	64k	superblocks,	min	block	size	32	bytes
§ Allocations	ranging	between	32	and	128	bytes;	average	80	bytes
§ [1]	Allocate	to	N%	;		[2]	cyclically	deallocate	&	allocate	between	N	and	2/3	N
§ parallel_for:	every	index	allocates	;		cyclically	deallocates	&	allocates
§ Measure	allocate	+	deallocate	operations	/	second	(best	of	10	trials)

§ Deallocate	much	simpler	and	fewer	operations	than	allocate

§ Test	Hardware:	Pascal,	Broadwell,	Knights	Landing
§ Fully	subscribe	cores
§ Every	thread	within	every	warp	allocates	&	deallocates

§ For	reference,	an	“apples	to	oranges”	comparison
§ CUDA	malloc /	free	on	Pascal
§ jemalloc on	Knights	Landing

12

Memory	Pool	Performance

§ Memory	pools	have	finite	size	with	well-bounded	scope
§ Algorithms’	and	data	structures’	memory	pools	do	not	pollute	(fragment)	
each	other’s	memory

Fill 75% Fill 95% Cycle 75% Cycle 95%
blocks: 938,500 1,187,500

Pascal 79 M/s 74 M/s 287 M/s 244 M/s
Broadwell 13 M/s 13 M/s 46 M/s 49 M/s
Knights Landing 5.8 M/s 5.8 M/s 40 M/s 43 M/s

apples to oranges comparison:
Pascal
using CUDA malloc

3.5 M/s 2.9 M/s 15 M/s 12 M/s

Knights Landing
using jemalloc

379 M/s 4115 M/s
thread local caches, optimal blocking, NOT fixed pool size

13

Scheduler	Unit	Test	Performance

§ (silly)	Fibonacci	task-dag	algorithm	measures	overhead
§ F(k)	=	F(k-1)	+	F(k-2)
§ F(k)	cumulatively	allocates/deallocates	N	tasks >>	“high	water	mark”
§ 1Mb	pool	comprised	of	31	x	32k	superblocks,	min	block	size	32	bytes
§ Fully	subscribe	cores;	single	thread	Fibonacci	task	consumes	entire	GPU	warp

§ Real	algorithms’	tasks	have	modest	internal	parallelism
§ Measure	tasks	/	second;	compare	to	raw	allocate	+	deallocate	performance

F(21) F(23) Alloc/Dealloc
cumulative tasks: 53131 139102 (for comparison)

Pascal 1.2 M/s 1.3 M/s 144 M/s
Broadwell 0.98 M/s 1.1 M/s 24 M/s
Knights Landing 0.30 M/s 0.31 M/s 21 M/s

14

Tacho’s Sparse	Cholesky Factorization
§ Multifrontal algorithm	with	bounded	memory	constraint
§ Kokkos	task	DAG	+	Kokkos	memory	pool	for	shared	scratch	memory
§ Task	fails	allocation	=>	respawn	to	try	again	after	other	tasks	deallocate
§ Test	setup:	scratch	memory	size	=	M	*	sparse	matrix	supernode size
§ Compare	to	Intel’s	pardiso,	sparse	matrix	N=57k,	NNZ=383k,	6662	supernodes

0
100
200
300
400
500
600
700

0 20 40 60 80

fa
ct

or
iz

at
io

n/
m

in
ut

e

threads

Knights Landing (1x68x4)

pardiso

tacho 4

tacho 8

tacho 16

0
50

100
150
200
250
300
350
400

0 20 40 60 80

pe
ak

 m
em

or
y

M
B

threads

pardiso

tacho

tacho

tacho

0

500

1000

1500

0 20 40 60 80

fa
ct

or
iz

at
io

n/
m

in
ut

e

threads

Haswell (2x16x2)

pardiso

tacho 4

tacho 8

tacho
16

0
50

100
150
200
250
300
350
400

0 20 40 60 80

pe
ak

 m
em

or
y

M
B

threads

pardiso

tacho 4

tacho 8

tacho
16

15

Summary
§ Initial	Task-DAG	capability
§ Portable:	CPU	and	GPU	architectures
§ Dynamic	DAG	of	heterogeneous	tasks
§ Hierarchical	– thread-team	data	parallelism	within	tasks
§ Evaluation/improvement	underway	via	sparse	matrix	factorization	mini-app

§ Initial	Work-DAG	capability
§ Portable:	CPU	and	GPU	architectures
§ Static	DAG	of	work	indices	for	single	work	function
§ Evaluation/improvement	underway	via	sweep	particle	transport	mini-app

§ Challenges	conquered,	esp.	for	GPU	portability	and	performance
§ Non-blocking	(non-waiting)	tasks	è new	respawn	pattern
§ Lock	free,	scalable	memory	pool	and	scheduler
§ GPU	__shared__	memory	to	address	non-coherent	L1	cache

